“尺规”查询结果


请输入要查询的词条内容:

正十五边形尺规作图法

在同一个圆中,用尺规作图法作出一个正三角形和一个正五边形,并且让这两个图形有一个顶点相交。从这个顶点出发,到达下一个正三角形顶点的弧长是1/3圆周,按同一方向,还是从那个顶点出发,到达下一个正五边形顶点的弧长是1/5圆周。我们知道,1/3-1/5=2/15,所以,我们所到达的正三角形顶点与正五边形顶点之间的弧长是2/15圆周。我们只需将这段弧长一分为二,就可以得到1/15圆周。而二等分圆周是可以用 详情>>

正十 五边形 五边 边形 尺规 作图


尺规作图

尺规作图是指用没有刻度的直尺和圆规作图。尺规作图是起源于古希腊的数学课题。只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题。尺规作图使用的直尺和圆规带有想像性质,跟现实中的并非完全相同:1、直尺必须没有刻度,无限长,且只能使用直尺的固定一侧。只可以用它来将两个点连在一起,不可以在上画刻度;2、圆规可以开至无限宽,但上面亦不能有刻度。它只可以拉开成之前构造过的长度。八种基本作图作图 详情>>

尺规 作图


尺规作图不能问题

尺规作图不能问题就是不可能用尺规作图完成的作图问题。这其中最著名的是被称为几何三大问题的古典难题:三等分角问题:三等分一个任意角;倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;化圆为方问题:作一个正方形,使它的面积等于已知圆的面积。在2400年前的古希腊已提出这些问题,直至1837年,法国数学家万芝尔才首先证明“三等分角”和“倍立方”为尺规作图不能问题。1882年德国数学家林德曼证 详情>>

尺规 作图 不能 问题


尺规作图三等分角

尺规作图三等分角的历史三等分角大约是在公元前五世纪由古希腊人提出来的,它和“立方倍积问题”、“化圆为方问题”一起被称为“古代三大几何难题”。两千多年来,从初学几何的青少年到经验丰富的学者,数以万计的人都曾经研究过“三等分角问题”,希腊数学家阿基米德(Archimedes,前287-前212年)曾用线条作图法宣称解决了“三等分角问题”;帕普斯(Pappus,约公元300年)在它有独创性的名著中曾证明 详情>>

尺规 规作 图三 等分


尺规作图三等分任意角

参见:三等分角 详情>>

尺规 规作 图三 等分 任意


几何尺规作图问题

“几何尺规作图问题”是指做图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。“几何尺规作图问题”包括以下四个问题1.化圆为方-求作一正方形使其面积等于一已知圆;2.三等分任意角;3.倍立方-求作一立方体使其体积是一已知立方体的二倍。4.做正十七边形。以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。第四个问题是高斯用代数的方 详情>>

几何 尺规 作图 问题


正五边形尺规作图

尺规作图是指用没有刻度的直尺和圆规作图。一把没有刻度的直尺看似不能做什么,画一个圆又不知道它的半径,画线段又没有精确的长度。其实尺规作图的用处很大,比如单用圆规找出一个圆的圆心,量度一个角的角度,等等。运用尺规作图可以画出与某个角相等的角,十分方便。近似尺规作图的简介(尺规作图的基本要求五种基本作图尺规作图公法尺规作图的著名问题那些正多边形可用尺规作图作出)尺规作图的相关延伸作法(近似画法园内切正 详情>>

五边形 五边 边形 尺规 作图